Motion of an Elastic Capsule in a Trapezoidal Microchannel under Stokes Flow Conditions
نویسندگان
چکیده
منابع مشابه
Motion of an elastic capsule in a constricted microchannel.
We study the motion of an elastic capsule through a microchannel characterized by a localized constriction. We consider a capsule with a stress-free spherical shape and impose its steady-state configuration in an infinitely long straight channel as the initial condition for our calculations. We report how the capsule deformation, velocity, retention time, and maximum stress of the membrane are ...
متن کاملMotion of an elastic capsule in a square microfluidic channel.
In the present study we investigate computationally the steady-state motion of an elastic capsule along the centerline of a square microfluidic channel and compare it with that in a cylindrical tube. In particular, we consider a slightly over-inflated elastic capsule made of a strain-hardening membrane with comparable shearing and area-dilatation resistance. Under the conditions studied in this...
متن کاملNavier-Stokes Flow in Cylindrical Elastic Tubes
Analytical expressions correlating the volumetric flow rate to the inlet and outlet pressures are derived for the time-independent flow of Newtonian fluids in cylindrically-shaped elastic tubes using a one-dimensional Navier-Stokes flow model with two pressure-area constitutive relations. These expressions for elastic tubes are the equivalent of Poiseuille and Poiseuille-type expressions for ri...
متن کاملNumerical Optimization of Trapezoidal Microchannel Heat Sinks
This study presents the numerical simulation of three-dimensional incompressible steady and laminar fluid flow and conjugate heat transfer of a trapezoidal microchannel heat sink using water as a cooling fluid in a silicon substrate. Navier-Stokes equations with conjugate energy equation are discretized by finite-volume method. We perform numerical computations for a range of 50 Re 600, 0.05W ...
متن کاملTwo-fluid Electrokinetic Flow in a Circular Microchannel (RESEARCH NOTE)
The two-fluid flow is produced by the combined effects of electroosmotic force in a conducting liquid and pressure gradient force in a non-conducting liquid. The Poisson-Boltzmann and Navier-Stokes equations are solved analytically; and the effects of governing parameters are examined. Poiseuille number increases with increasing the parameters involved. In the absence of pressure gradient, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Polymers
سال: 2020
ISSN: 2073-4360
DOI: 10.3390/polym12051144